xSPECT – Advances in Nuclear Medicine

27. Ulusal Nükleer Tıp Kongresi
01. – 05. Nisan 2015, Adana, Turkey

Harun Ilhan
Department of Nuclear Medicine
University Hospital of Munich
Marchioninistr. 15, 81377 Munich, Germany
Email: harun.ilhan@med.uni-muenchen.de
Nuclear medicine

From Wikipedia, the free encyclopedia

Nuclear medicine is a medical specialty involving the application of radioactive substances in the diagnosis and treatment of disease.
What is „theranostics“?

- Combination of therapy and diagnostic
- Therapeutic procedure or product followed by diagnostic procedure (e.g. drug efficacy for patients with specific diseases)
- Diagnostic procedure followed by therapeutic procedure (e.g. imaging procedure for therapy indication)
- Tumor characterization by specific radiopharmaceuticals
Personalized medicine
Theranostics example

- Diagnostic Ga-68 DOTA TATE PET for patient evaluation for Peptide-Receptor-Radionuclide-Therapy with Lu-177 DOTA TATE

\[\text{68Ga-DOTATATE} \]

\[\text{90Y-DOTATATE} \]

\[\text{177Lu-DOTATATE} \]
PET Radiopharmaceuticals 2005 and 2013

2005

- FDG 93.40%
- Cholin 2.03%
- FET 4.58%
- Ga-TATE 4.43%
- FEC 12.57%
- FDOPA 1.08%
- DMFP 0.67%
- FP 0.11%
- Ga-PSMA 0.13%
- F-18 AlzComp 1.31%

Total: 2666

2013

- FDG 70.57%
- FET 9.13%
- Ga-TATE 12.57%
- FEC 4.43%
- FDOPA 0.67%
- DMFP 0.11%
- FP 0.11%
- Ga-PSMA 0.13%
- F-18 AlzComp 1.31%

Total: 6389

2490 FDG
122 FET
54 Choline
2666 total

4509 FDG
803 Ga-TATE
583 FET
282 FEC
84 Alzheimercomp.
69 FDOPA
50 DMFP/FP
8 Ga-PSMA
6389 total
Do we need scintigraphy in this situation?

- Increasing demand for SPECT

Number of scintigraphic investigations at the Department of Nuclear Medicine, LMU Munich 2006 - 2013

- Scintigraphies
- Percentage Of SPECT and/or SPECT / CT
Relevance of Molecular Imaging and SPECT

EANM 2007 Statistics Survey: $\Sigma 7.5 \times 10^6$ per year

Installed cameras:
- PET and PET/CT: 503
- SPECT Cameras: 4250

In-Vivo Diagnostic Procedures in the USA

Delbeke and Segall; J Nucl Med 2011
Status of and trends in Nuclear Medicine in the United States:

- Total: 17×10^6 per year
- PET/CT and PET: 1.5×10^6 per year
Relevance of SPECT

Summary
The medical use of radiopharmaceuticals up to 2025
An exploration of the future medical use of high flux reactor isotopes

www.eanm.org – Technopolis report summary
Relevance of SPECT

Figure 1 Relative use of modalities in 2008, 2015 and 2025 (n=23)

www.eanm.org – Technopolis report summary
Relevance of SPECT

Figure 3. Substitution effects of SPECT by multi-modalities

Source: survey Technopolis Group. n=23

www.eanm.org – Technopolis report summary
Advantages of SPECT imaging

- Installed camera basis
- Logistics
 (Availability of kits, radiopharmaceutical production and distribution)
- Development of new camera types / reconstruction algorithms
PET vs. SPECT in clinical oncology

- Inferiority of SPECT in terms of spatial resolution and quantification
- However, due to availability, costs, logistics SPECT might be the better choice

- Mandatory requirements for the future:
 - adequate radiopharmaceuticals
 - development in camera systems and reconstruction methods

- Siemens Symbia Intevo
 - the world’s first xSPECT system
 - „see the unseen“
 - „quantify the difference“
 - „adapt the lowest dose“
 - „double the throughput“
PET vs. SPECT in clinical oncology

- Inferiority of SPECT in terms of spatial resolution
- However, due to availability, costs, logistics

- Mandatory requirements for the future:
 - adequate radiopharmaceuticals
 - development in camera systems and reconstruction methods

- Siemens Symbia Intevo
 - the world’s first xSPECT system
 - „see the unseen“
 - „quantify the difference“
 - „adapt the lowest dose“
 - „double the throughput“
Radiopharmaceuticals for theranostic approaches

- I-131
- I-131 MIBG
- Ga-68 / Lu-177 somatostatine receptor ligands
- Ga-68 / Lu-177 PSMA
- Y-90 Ibritumomab
- Y-90 Microspheres
- Ra-223 Dicholride
- Sm-153 EDTMP
Radiopharmaceuticals for theranostic approaches

- I-131
- I-131 MIBG
- Ga-68 / Lu-177 somatostatine receptor ligands
- Ga-68 / Lu-177 PSMA
- Y-90 Ibritumomab
- Y-90 Microspheres
- Ra-223 Dicholride
- Sm-153 EDTMP
Somatostatine-receptor ligands for therapy and diagnostics

68Ga-DOTATATE

90Y-DOTATATE

177Lu-DOTATATE
Neuroendocrine Tumors

DOTATATE-PET

Conventional Octreotide-scintigraphy
Relevance of quantification and dosimetry

111In-Octreoscan® scintigraphy 24 h p.i.

111In-DOTA-BASS scintigraphy 24 h p.i.

111In-DOTA-JR11 scintigraphy 24 h p.i.

Agonist
affinity profile (IC_{50})
22 ± 3.6 nM

Antagonist
affinity profile (IC_{50})
9.4 ± 0.4 nM

Antagonist
affinity profile (IC_{50})
3.8 ± 0.7 nM

Courtesy Juri Ruf; Dept. of Nuclear Medicine, Univ. Freiburg
Neuroendocrine Tumors

60yr patient, NET of the pancreas with lymphnode and hepatic filiae
Ga-68 DOTATATE PET/CT prior to therapy and after 2 cycles

2 x therapy
with 7400 MBq
177Lu-DOTATATE
RESULTS – 177LU-DOTATATE

- 310 patients1
- CR 2%, PR 28%, MR 16%
- SD 35%
- PD 20%
- Median TTP 40 months
- Median survival 46 months
- Significant improvement of QoL in 50 patients2

1 Kwekkeboom et al., JCO 2008
2 Teunissen et al., JCO 2004
DOTA-TATE therapies / year

therapies

year

PRRT THERAPY AND THERAPY MONITORING

- Diagnostic PET/CT
- Therapy
- 1h p.i.
- 24h p.i.
- 48h p.i.
- 72h p.i.

177Lu-DOTATATE PRRT

- Planar dynamic scintigraphy
- Planar + SPECT
- Blood samples
- Urine
- Planar + SPECT
- Blood samples
- Planar + SPECT
- Blood samples
- Planar + SPECT
- Blood samples

CT, PET, MIP Display of PET, Planar Scintigraphy, SPECT, MIP Display of SPECT

Activity [Bq]

- Bi–exponential fit
- Planar dynamic scans (12 frames a 5 min.)
- Planar whole–body scan (16 min.)

Department of Nuclear Medicine
LMU Munich

KLINIKUM DER UNIVERSITÄT MÜNCHEN®
Neuroendocrine Tumors

38yr female patient, NET of the ileum with liver and spleen metastases
Currently undergoing 3rd cycle of Lu-177-DOTATATE treatment
Lu-177-DOTATATE SPECT/CT: xSPECT Reconstruction

upper energy window (both available)
currently no quantitation available (at our site)
Lu-177-DOTATATE SPECT/CT: LMU-Reconstruction

DOSE ESTIMATIONS

„manual“ method

![Spleen met.](SPECT/CT day 0)
![Spleen met.](SPECT/CT day 3)

![Liver met.](SPECT/CT day 0)
![Liver met.](SPECT/CT day 3)
DOSE ESTIMATIONS

<table>
<thead>
<tr>
<th>Organ</th>
<th>Dose [Gy]</th>
<th>$T_{1/2}$ [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor (spleen)</td>
<td>15.2</td>
<td>77.7</td>
</tr>
<tr>
<td>Tumor (liver)</td>
<td>10.5</td>
<td>65.7</td>
</tr>
<tr>
<td>Kidney (left)</td>
<td>4.2</td>
<td>72.2</td>
</tr>
<tr>
<td>Kidney (right)</td>
<td>4.5</td>
<td>61.5</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>0.04</td>
<td>9.1 (0.5 fast)</td>
</tr>
</tbody>
</table>
Radiopharmaceuticals for theranostic approaches

- I-131
- I-131 MIBG
- Ga-68 / Lu-177 somatostatine receptor ligands
- Ga-68 / Lu-177 PSMA
- Y-90 Ibritumomab
- Y-90 Microspheres
- Ra-223 Dichloride
- Sm-153 EDTMP
Radiopharmaceuticals for theranostic approaches

“I go home today. They cured me using this new miracle drug. I’m afraid it’ll be years before it’s approved for humans.”
68Ga-PSMA in clinical routine

Glu-NH-CO-NH-Lys-(Ahx)-[68Ga(HBED CC)]

„bench to bedside“

6/2012
first patient data from Afshar-Oromieh, et al. in Heidelberg:
[68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH

since 12/2013
clinical routine at our institution
CLINICAL TRANSLATION

Preclinical: LNCaP Xenografts

Patient: recurrent prostate cancer

Background

% ID / g

Tumor

Background

Tumor

[68Ga]HBED-CC-conjugate

[68Ga] Reference

time after injection [min]

Courtesy Uwe Haberkorn, Dept. of Nuclear Medicine
University Hospital Heidelberg
Tracer-Uptake in human studies

<table>
<thead>
<tr>
<th>Lesion Type</th>
<th>SUV<sub>max</sub> in tumor suspicious lesions</th>
<th>average SUV<sub>max</sub> (± SD) of Choline</th>
<th>average SUV<sub>max</sub> (± SD) of PSMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymph node metastases (n=40)</td>
<td></td>
<td>2.8 ± 2.0</td>
<td>16.2 ± 18.9</td>
</tr>
<tr>
<td>Bone metastases (n=23)</td>
<td></td>
<td>6.1 ± 2.6</td>
<td>9.2 ± 3.8</td>
</tr>
<tr>
<td>Local relapses (n=10)</td>
<td></td>
<td>4.3 ± 1.2</td>
<td>5.4 ± 2.9</td>
</tr>
<tr>
<td>Soft tissue metastases (n=5)</td>
<td></td>
<td>5.2 ± 3.2</td>
<td>5.4 ± 5.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesion Type</th>
<th>average ratio (± SD) of Choline</th>
<th>average ratio (± SD) of PSMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymph node metastases (n=40)</td>
<td>2.6 ± 1.9</td>
<td>31.5 ± 33.3</td>
</tr>
<tr>
<td>Bone metastases (n=23)</td>
<td>3.3 ± 2.1</td>
<td>13.6 ± 11.7</td>
</tr>
<tr>
<td>Local relapses (n=10)</td>
<td>4.1 ± 1.6</td>
<td>11.5 ± 7.5</td>
</tr>
<tr>
<td>Soft tissue metastases (n=5)</td>
<td>3.5 ± 2.4</td>
<td>8.8 ± 11.3</td>
</tr>
</tbody>
</table>
Ga-68 PSMA PET / CT in metastatic prostate cancer

- high uptake in bone and soft tissue metastases
- therapy option with Lu-177 labelled ligands
Ga-68 PSMA PET / CT and Lu-177-PSMA therapy

Male, 54 y, 84 kg, prostate-CA, 1 x 223Ra, 1st cycle of 177Lu-PSMA (3.7 GBq)
Lu-177-PSMA wholebody planar images

68Ga-PSMA PET/CT

177Lu-PSMA WB planar
Lu-177-PSMA quantitative SPECT/CT: LMU-reconstruction

PET/CT

LMU-Recon of SPECT & SPECT/CT (Siemens Symbia T1)

(⁶⁸Ga-PSMA)

Day 0

Day 1

Day 2

Day 3

PET GkAc

Min: SUVmax 0.00 — 0 Bq/cc
Max: SUVmax 0.145 — 70228 Bq/cc
Current: SUVmax 2.88 — 28291 Bq/cc

spect-day0-ac1-sc1-bc1

Min: 0 Bq/cc
Max: 710228 Bq/cc
Current: 971189 Bq/cc

spect-day1-ac1-sc1-bc1

Min: 0 Bq/cc
Max: 1210017 Bq/cc
Current: 970099 Bq/cc

spect-day2-ac1-sc1-bc1

Min: 0 Bq/cc
Max: 121628 Bq/cc
Current: 928723 Bq/cc

spect-day3-ac1-sc1-bc1

Min: 0 Bq/cc
Max: 1210017 Bq/cc
Current: 970099 Bq/cc

PET/CT

KLINIKUM DER UNIVERSITÄT MÜNCHEN®
Department of Nuclear Medicine
LMU Munich
Lu-177-PSMA quantitative SPECT/CT: LMU-reconstruction

DOSE ESTIMATION

„manual“ method
Lu-177-PSMA quantitative SPECT/CT: LMU-reconstruction

DOSE ESTIMATION

<table>
<thead>
<tr>
<th>Organ</th>
<th>Dose [Gy]</th>
<th>$T_{1/2}$ [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor (rib)</td>
<td>7.6</td>
<td>93.6</td>
</tr>
<tr>
<td>Tumor (spine)</td>
<td>5.7</td>
<td>67.8</td>
</tr>
<tr>
<td>Kidney (left)</td>
<td>2.3</td>
<td>30.4</td>
</tr>
<tr>
<td>Kidney (right)</td>
<td>2.2</td>
<td>31.8</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>0.04</td>
<td>6.4 (0.5 fast)</td>
</tr>
</tbody>
</table>
Relevance of quantification / dosimetry

- Patient selection
- Selection of radionuclide
- Therapy monitoring and response
- Correlation with clinical outcome

- Current issues:
 - calibration
 - time and labour
 - manually co-registration
 - segmentation of relevant organ structures
Relevance of Absolute Quantification

e.g. Samarium-153 EDTMP
Therapy response following Ra-223 therapy in metastatic prostate cancer

12.12.2013 (pretherapy)

PSA (ng/ml):
Pre-therapy: 239
After 6 cycles: 16,6
Follow-up 3 months after 6th cycle: 9,98

30.04.2014 (after 6 cycles Ra-223)
Differentiation of benign and malignant lesions

- 62 year old female
- Breast cancer 1998
- s/p ablatio mammae
- s/p radiotherapy
- s/p pulmonary metastasis and lung resection
- CT scan in outside clinic with suspected metastasis of the R. inferior ossis pubis and the sacroiliac joint
Focal activity in the ischial tuberosity without explicit CT-correlate

benign? malignant?
Patient example – pelvis – MRI scan

- Tendinitis of the flexor muscle insertion in the ischial tuberosity
- No signs for malignancy
Patient example – pelvis – xSPECT

- distinct focal activity; differential diagnosis, however, remains difficult
- less overestimation as compared to Flash 3D
Patient example – pelvis – xSPECT

- Absolute quantification of uptake as a reference standard?
Animal models – further research

- Siemens Intevo
- 170 MBq Tc-99m-DPD
- SPECT parameters
 - xSPECT bone recon
 - 256 matrix, 64 views, 30 sec
- CT parameters
 - 16 slices
 - 0,75 mm
THANK YOU VERY MUCH FOR YOUR ATTENTION!

Special thanks to:
Meltem Yorulmaz, Siemens Medical
Mehmet Aycin, Siemens Medical
Hans Vija, Siemens Medical
Peter Bartenstein, LMU Munich
Guido Böning, LMU Munich
Andreas Delker, LMU Munich
Technichal staff LMU Munich
Hans Vija, Siemens Medical
Juri Ruf, Univ. Freiburg
Uwe Haberkorn, Univ. Heidelberg

Harun Ilhan
Department of Nuclear Medicine
Oncology Workgroup
LMU Munich
Marchioninistr. 15, 81377 Munich
Tel: +4989 / 7095-4646
Fax: +4989 / 7095-7646
Email: harun.ilhan@med.uni-muenchen.de

Team of the Dept of Nuclear Medicine, December 2013
Patient 9

- 63 year old male
- suspected stress shielding
- total hip prosthesis left 2009
- s/p tibia fracture left
- s/p foot ankle fracture right

- tracer accumulation around prosthesis stem
- sign for loosening
Patient 9 – xSPECT vs. Flash 3D

- tracer accumulation as a sign for prosthesis loosening
- Flash 3D seems „diffuse“, whereas xSPECT is clearly located around the prosthesis stem
Patient 7

- 65 year old male
- prostate cancer
- s/p thoracic spine osteosynthesis
- s/p prosthesis right hip
- severe pain in lumbal spine

- tracer accumulation in lumbal spine
- malignant? inflammation? fracture?
Patient 7 – lumbal spine – Flash 3D

- upper and lower end plate deformity in lumbal vertebra
- s/p fracture (osteoporotic)
- diagnose only in awareness of CT
Patient 7 – lumbal spine – xSPECT

- confirmation of diagnose
- all relevant information included in xSPECT